

# Development of an Effective Scalable Enantioselective Synthesis of the HIV-1 Entry Inhibitor BNM-III-170 as the Bis-Trifluoroacetate Salt

Master of Chemical Sciences J. Chen, J. Park, S. M. Kirk, H-C. Chen, X. Li, D. J. Lippincott, B. Melillo, and A. B. Smith, III. Org. Process Res. Dev. 2019, 23, 2464-2469

Name: Hung-Ching Chen Location: Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States

Advisor: Amos B. Smith, III, Ana-Rita, Mayol Committee: David Chenoweth, Marisa

Kozlowski, Patrick Walsh **Graudation year:** May, 2020

### Introduction FACT SHEET – WORLD AIDS DAY 2019<sup>1</sup>

HIV/AIDS (Human Immunodeficiency Virus / Acquired Immune Deficiency Syndrome)

- ▶75 million people have become infected with HIV since the start of the epidemic.
- ≥ 2 million people became newly infected with HIV annually. (About 5000 new HIV infections a day)
- ➤ Without proper treatment, people with AIDS could only survive three years.
- ▶1 million people have died from AIDS-related illnesses in 2018
- ➤ Although people have access to HAART, the cure has yet to be found

# Introduction HIV Entry Mechanism<sup>2</sup>

### **Envelope Trimer**

- $\triangleright$  Make up of gp120<sub>3</sub> and gp41<sub>3</sub>
- ➤ On the virus and infected cells
- ➤ Only virus specific protein

#### The Smith Group

- ➤ CD4mc binds to gp120 and achieve HIV deactivation
- Sensitze HIV-1 virions to those otherwise non-neutralizing antibodies

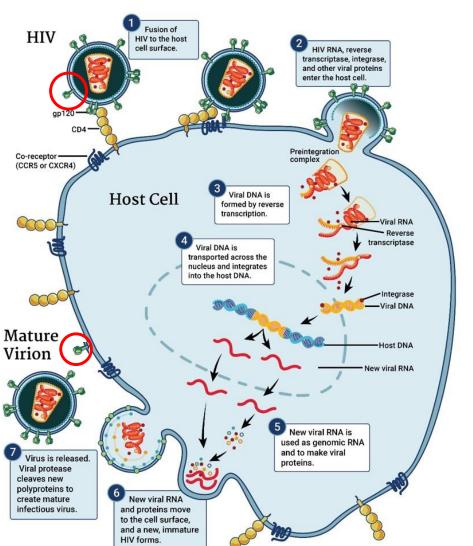
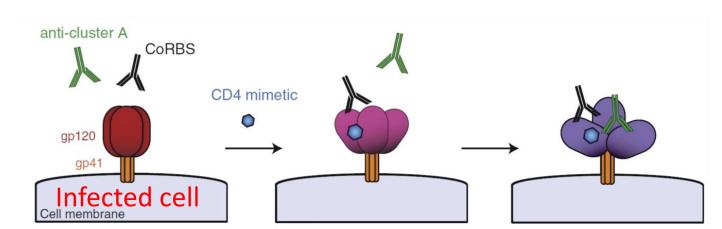




Fig 1. HIV Replication Cycle<sup>2</sup>

# Introduction Antibody Dependent Cellular Cytotoxicity<sup>3, 4</sup>



- CD4mc could sensitize HIV-1 infected cell to ADCC
- CD4mc Protects noninfected cell from ADCC

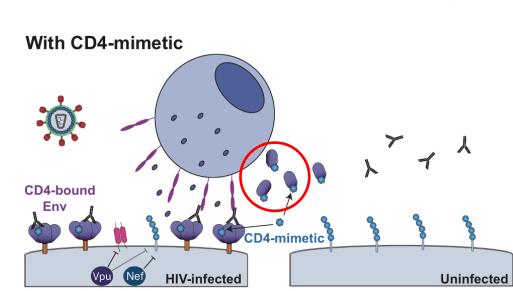
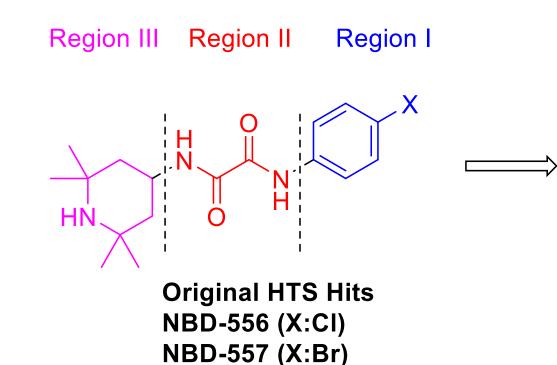
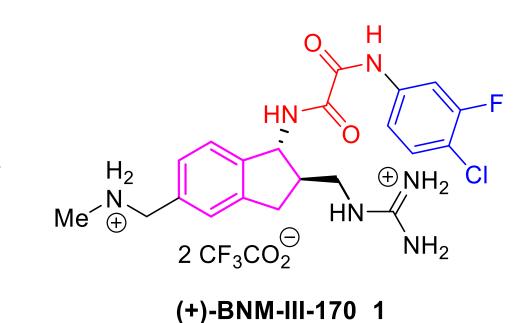
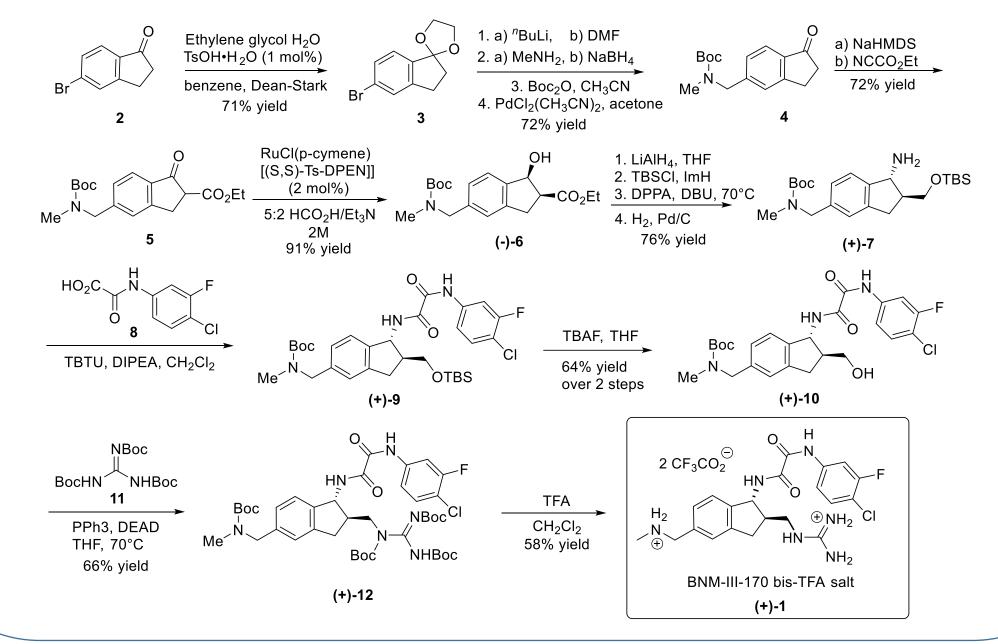



Fig 2. ADCC mechanism<sup>3, 4</sup>

## **Experimental Design Small Molecule CD4 Mimetics**



Fig 3. CD4mc design based on the HTS results by Debnath group<sup>5</sup>



| Strain | Clade | BNM-III-170 (IC50 μM) |
|--------|-------|-----------------------|
| JR-FL  | В     | 11.6                  |
| YU2    | С     | 1.8                   |
| AD8    | Α     | 7.1                   |
| C5     | С     | 2.1                   |
| AMLV   |       | >300                  |

Chart 1. Bioactivity of BNM-III-170

# First Generation Synthesis of BNM-III-170<sup>6</sup> (15 steps, 6.2% yield, 12 column chromatagraphy)



### **Discussion/Conclusion**

- ➤ Scale up synthesis which required only 1 column chomatagraphy in overall 16 steps and 9.64% yield has been achieved
- ≥ 45g of BNM-III-170 has been synthesized
- ➤ New analogs should be synthesized to increase the bioactivity

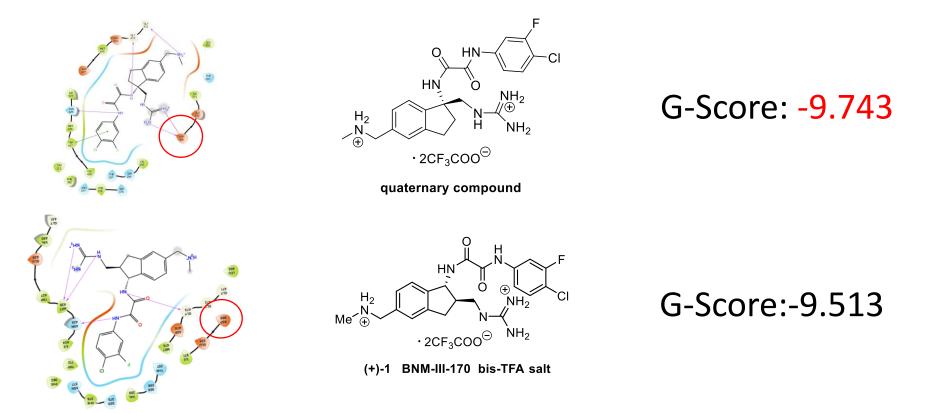



Fig 3. Computational analysis of BNM-III-170 and new analog<sup>8</sup>

#### FUNDING AND SUPPORT

HIV Entry Antagonists P01-GM 56550



Joseph Sodroski (Harvard) Immunology and Biology Team

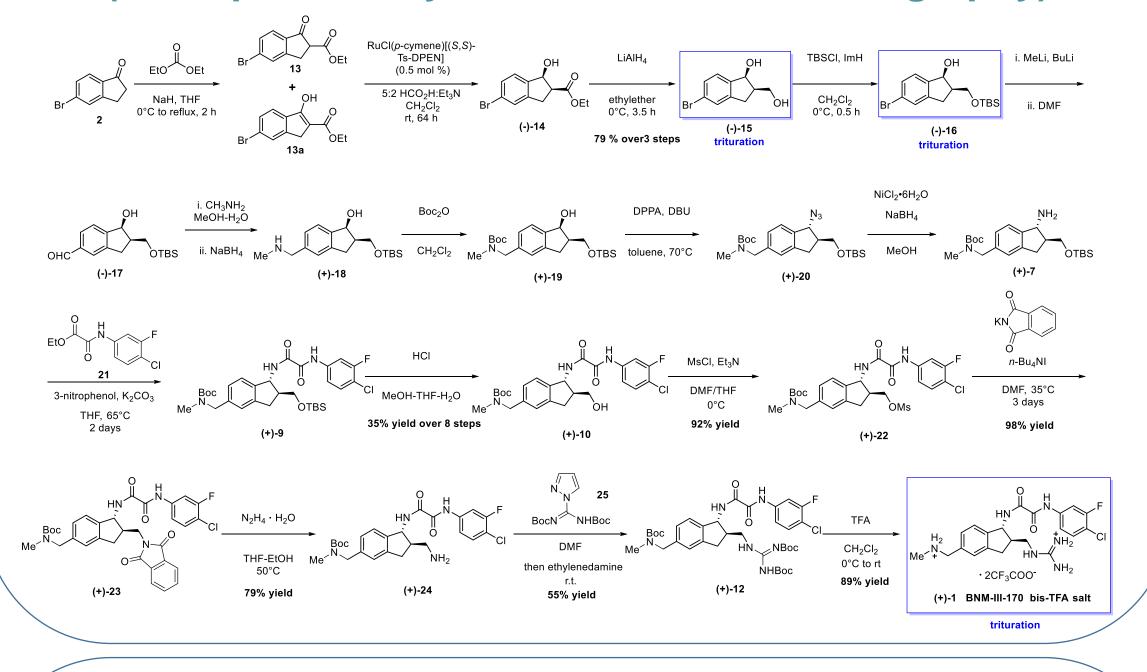
Wayne Hendrickson (Columbia)
Crystallography Team

Navid Madani

### Synthetic Chemistry Althea E. Gaffney

Cheyenne Chaplain
Christopher Fritschi
Daniel Lippincott
Junhua Chen
Jun Park
Melissa C. Grenier
Ta-Jung Chiu
Tyler Higgins

Irwin Chaiken (Drexel)
Biochemistry Team


Walther Mothes (Yale) smFRET Team

Cameron Abrams (Drexel)
Computational Team

Andrés Finzi (CRCHUM)

ADCC Team

### Scaled up Synthesis of BNM-III-170<sup>7</sup> (16 steps, 9.64% yield, 1 column chromatagraphy)



#### Reference

- 1. UNAID, Global AIDS Update 2019 Fact Sheet, UNAIDS
- 2. https://www.niaid.nih.gov/diseases-conditions/hiv-replication-cycle
- 3. N. Madani, A. B. Smith, III, J. Sodroski, et al. *J. Virol.* **2014**, 6542; J. Richard, A. B. Smith, III, A. Finzi et al. *PNAS* **2015**, *112*, E2687;
- 4. J. Richard, A. B. Smith, III, A. Finzi et al. E. BioMed, **2016**, 122; W. S. Lee, A. B. Smith, III, J. Sodroski, , A. Finzi, S. Kent, et al. *J. Virol.* **2014**, 6542. A. Finzi. *TEDxMontreal.* **2015**.
- 5. Q. Zhao, N. Strick, N. Neamati. A.K. Debnath, J. Virol. 2005, 339, 213.
- 6. Melillo, B.; Liang, S.; Park, J.; Schön, A.; Courter, J. R.; LaLonde, J. M.; Wendler, D. J.; Princiotto, A. M.; Seaman, M. S.; Freire, E.; Sodroski, J.; Madani, N.; Hendrickson, W. A.; Smith, III, A. B. *ACS. Med. Chem. Lett.* **2016**, *7*, 330–334.
- 7. J. Chen, J. Park, S. M. Kirk, <u>H-C. Chen</u>, X. Li, D. J. Lippincott, B. Melillo, and A. B. Smith, III. *Org. Process Res. Dev.* **2019**, 23, 2464-2469
- 8. Work with Prof. Cameron Abrams, Mohammadjavad Mohammadi